Discrepancy inequalities for directed graphs
نویسندگان
چکیده
We establish several discrepancy and isoperimetric inequalities for directed graphs by considering the associated random walk. We show that various isoperimetric parameters, as measured by the stationary distribution of the random walks, including the Cheeger constant and discrepancy, are related to the singular values of the normalized probability matrix and the normalized Laplacian. Further, we consider the skew-discrepancy of directed graphs which measures the difference of flow among two subsets. We show that the skewdiscrepancy is intimately related to Z, the skew-symmetric part of the normalized probability transition matrix. In particular, we prove that the skewdiscrepancy is within a logarithmic factor of ‖Z‖. Finally, we apply our results to construct extremal families of directed graphs with large differences between the discrepancy of the underlying graph and the skew-discrepancy.
منابع مشابه
Spectral graph theory: Cheeger constants and discrepancy∗
In this third talk we will discuss properties related to edge expansion. In particular, we will define the Cheeger constant (which measures how easy it is to cut off a large piece of the graph) and state the Cheeger inequalities. We also will define and discuss discrepancy for undirected and directed graphs. We also state the Perron-Frobenius Theorem which is a useful tool in spectral graph the...
متن کاملSome topological indices of graphs and some inequalities
Let G be a graph. In this paper, we study the eccentric connectivity index, the new version of the second Zagreb index and the forth geometric–arithmetic index.. The basic properties of these novel graph descriptors and some inequalities for them are established.
متن کاملIndependent domination in directed graphs
In this paper we initialize the study of independent domination in directed graphs. We show that an independent dominating set of an orientation of a graph is also an independent dominating set of the underlying graph, but that the converse is not true in general. We then prove existence and uniqueness theorems for several classes of digraphs including orientations of complete graphs, paths, tr...
متن کاملA note on linear discrepancy
Close upper and lower bounds on the linear discrepancy of incidence matrices of directed graphs are determined. For such matrices this improves on a bound found in the work of Doerr [Linear discrepancy of basic totally unimodular matrices, The Electronic Journal of Combinatorics, 7:Research Paper 48, 4 pp., 2000].
متن کاملOn independent domination numbers of grid and toroidal grid directed graphs
A subset $S$ of vertex set $V(D)$ is an {em indpendent dominating set} of $D$ if $S$ is both an independent and a dominating set of $D$. The {em indpendent domination number}, $i(D)$ is the cardinality of the smallest independent dominating set of $D$. In this paper we calculate the independent domination number of the { em cartesian product} of two {em directed paths} $P_m$ and $P_n$ for arbi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Applied Mathematics
دوره 176 شماره
صفحات -
تاریخ انتشار 2014